Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger-Weber potential
نویسندگان
چکیده
While most existing theoretical studies on the borophene are based on first-principles calculations, the present work presents molecular dynamics simulations for the lattice dynamical and mechanical properties in borophene. The obtained mechanical quantities are in good agreement with previous first-principles calculations. The key ingredients for these molecular dynamics simulations are the two efficient empirical potentials developed in the present work for the interaction of borophene with low-energy triangular structure. The first one is the valence force field model, which is developed with the assistance of the phonon dispersion of borophene. The valence force field model is a linear potential, so it is rather efficient for the calculation of linear quantities in borophene. The second one is the Stillinger-Weber potential, whose parameters are derived based on the valence force field model. The Stillinger-Weber potential is applicable in molecular dynamics simulations of nonlinear physical or mechanical quantities in borophene.
منابع مشابه
Mechanical Characteristics and Failure Mechanism of Nano-Single Crystal Aluminum Based on Molecular Dynamics Simulations: Strain Rate and Temperature Effects
Besides experimental methods, numerical simulations bring benefits and great opportunities to characterize and predict mechanical behaviors of materials especially at nanoscale. In this study, a nano-single crystal aluminum (Al) as a typical face centered cubic (FCC) metal was modeled based on molecular dynamics (MD) method and by applying tensile and compressive strain loadings its mechanical ...
متن کاملEstimation of the Elastic Properties of Important Calcium Silicate Hydrates in Nano Scale - a Molecular Dynamics Approach
Approximately, 50 to 70 percent of hydration products in hydrated cement paste are polymorphisms of C-S-H gel. It is highly influential in the final properties of hardened cement paste. Distinguishing C-S-H nano-structure significantly leads to determine its macro scale ensemble properties. This paper is dealt with nano-scale modeling. To achieve this, the most important C-S-H compounds, with a...
متن کاملMolecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity
متن کامل
Elastic Properties and Fracture Analysis of Perfect and Boron-doped C2N-h2D Using Molecular Dynamics Simulation
This paper explores the mechanical properties and fracture analysis of C2N-h2D single-layer sheets using classical molecular dynamics (MD) simulations. Simulations are carried out based on the Tersoff potential energy function within Nose-Hoover thermostat algorithm at the constant room temperature in a canonical ensemble. The influences of boron (B) doping on the mechanical properties, ...
متن کاملEnabling Computational Nanotechnology through JavaGenes in a Cycle Scavenging Environment
A genetic algorithm procedure is developed and implemented for fitting parameters for many-body inter-atomic force field functions for simulating nanotechnology atomistic applications using portable Java on cycle-scavenged heterogeneous workstations. Given a physics based analytic functional form for the force field, correlated parameters in a multi-dimensional environment are typically chosen ...
متن کامل